INTRINSIC Lp METRICS FOR CONVEX BODIES

نویسنده

  • RICHARD A. VITALE
چکیده

Intrinsic Lp metrics are defined and shown to satisfy a dimension–free bound with respect to the Hausdorff metric. MSC 2000: 52A20, 52A27, 52A40, 60G15.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Relative entropies for convex bodies

We introduce a new class of (not necessarily convex) bodies and show, among other things, that these bodies provide yet another link between convex geometric analysis and information theory. Namely, they give geometric interpretations of the relative entropy of the cone measures of a convex body and its polar and related quantities. Such interpretations were first given by Paouris and Werner fo...

متن کامل

Stability results for some geometric inequalities and their functional versions ∗

The Blaschke Santaló inequality and the Lp affine isoperimetric inequalities are major inequalities in convex geometry and they have a wide range of applications. Functional versions of the Blaschke Santaló inequality have been established over the years through many contributions. More recently and ongoing, such functional versions have been established for the Lp affine isoperimetric inequali...

متن کامل

General Lp-mixed width-integral of convex bodies and related inequalities

The conception of general Lp-mixed width-integral of convex bodies is introduced and related isoperimetric type inequality, Aleksandrov-Fenchel type inequality and a cyclic inequality are established. Further, the extremum values for the general Lpmixed width-integral are obtained. c ©2017 All rights reserved.

متن کامل

INTERSECTION BODIES AND Lp-SPACES

In this talk we discuss a new connection between convex geometry and the theory of Lp-spaces. It appears that intersection bodies, one the main objects of convex geometry, are directly related to the concept of embedding of normed spaces in Lp with p < 0. This allows to get new geometric results by extending different facts about Lp-spaces to negative values of p. We present several application...

متن کامل

On Volume Distribution in 2-convex Bodies

We consider convex sets whose modulus of convexity is uniformly quadratic. First, we observe several interesting relations between different positions of such “2-convex” bodies; in particular, the isotropic position is a finite volume-ratio position for these bodies. Second, we prove that high dimensional 2-convex bodies posses one-dimensional marginals that are approximately Gaussian. Third, w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003